Genetic Variation of the Endangered Neotropical Catfish Steindachneridion scriptum (Siluriformes: Pimelodidae)

Front Genet. 2018 Feb 19:9:48. doi: 10.3389/fgene.2018.00048. eCollection 2018.

Abstract

Steindachneridion scriptum is an important species as a resource for fisheries and aquaculture; it is currently threatened and has a reduced occurrence in South America. The damming of rivers, overfishing, and contamination of freshwater environments are the main impacts on the maintenance of this species. We accessed the genetic diversity and structure of S. scriptum using the DNA barcode and control region (D-loop) sequences of 43 individuals from the Upper Uruguay River Basin (UUR) and 10 sequences from the Upper Paraná River Basin (UPR), which were obtained from GenBank. S. scriptum from the UUR and the UPR were assigned in two distinct molecular operational taxonomic units (MOTUs) with higher inter-specific K2P distance than the optimum threshold (OT = 0.0079). The COI Intra-MOTU distances of S. scriptum specimens from the UUR ranged from 0.0000 to 0.0100. The control region indicated a high number of haplotypes and low nucleotide diversity, compatible with a new population in recent expansion process. Genetic structure was observed, with high differentiation between UUR and UPR basins, identified by BAPS, haplotype network, AMOVA (FST = 0.78, p < 0.05) and Mantel test. S. scriptum from the UUR showed a slight differentiation (FST = 0.068, p < 0.05), but not isolation-by-distance. Negative values of Tajima's D and Fu's Fs suggest recent demographic oscillations. The Bayesian skyline plot analysis indicated possible population expansion from beginning 2,500 years ago and a recent reduction in the population size. Low nucleotide diversity, spatial population structure, and the reduction of effective population size should be considered for the planning of strategies aimed at the conservation and rehabilitation of this important fisheries resource.

Keywords: DNA barcode; conservation of natural resources; control region mitochondrial DNA; endangered species; freshwater fishes.