To analyze the N-methyl-d-aspartate (NMDA) receptor distribution in the central nervous system, fluorinated ligands that selectively address the ifenprodil binding site of GluN2B-subunit-containing NMDA receptors were developed. Various strategies to introduce a fluorine atom into the potent GluN2B ligand 2 (3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-3-benzazepin-1,7-diol) were pursued, including replacement of the benzylic OH moiety with a fluorine atom (13) and introduction of fluoroethoxy moieties at various positions (14 (7-position), 17 (9-position), 18a-c (1-position)). With respect to GluN2B affinity and selectivity over related receptors, the fluoroethoxy derivatives 14 and 18a are the most promising ligands. Radiosynthesis of fluoroethoxy derivative [18 F]14 was performed by nucleophilic substitution of the phenol 2 with 2-[18 F]fluoroethyl tosylate. On rat brain slices the fluorinated PET tracer [18 F]14 accumulated in regions with high density of NMDA receptors containing GluN2B subunits. The bound radioactivity could not be replaced by (S)-glutamate. However, the GluN2B ligands eliprodil, Ro 25-6981, and the non-labeled 3-benzazepine 14 were able to abolish the specific binding of [18 F]14.
Keywords: 3-benzazepines; GluN2B; NMDA receptor; radiosynthesis; selectivity.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.