Beneficial effects of some phenolic compounds in modulation of carbohydrate digestion and glycemic response have been reported, however effects of phenolics from processed potato products on these endpoints are not well known. The aims of this study were to characterize phenolic profiles of fresh potatoes (purple, red, or white fleshed; 2 varieties each) and chips, and to examine the potential for potato phenolic extracts (PPE) to modulate starch digestion and intestinal glucose transport in model systems. Following in vitro assessment, a pilot clinical study (n=11) assessed differences in glycemic response and gastric emptying between chips from pigmented and white potatoes. We hypothesized that phenolics from pigmented potato chips would be recovered through processing and result in a reduced acute glycemic response in humans relative to chips made from white potatoes. PPEs were rich in anthocyanins (~98, 11 and ND mg/100 g dw) and chlorogenic acids (~519, 425 and 157 mg/100 g dw) for purple, red and white varieties respectively. While no significant effects were observed on starch digestion by α-amylase and the α-glucosidases, PPEs significantly (p<0.05) decreased the rate of glucose transport, measured following transport of 1,2,3,4,5,6,6-d7 -glucose (d7-glu) across Caco-2 human intestinal cell monolayers, by 4.5-83.9%. Consistent with in vitro results, consumption of purple potato chips modestly but significantly (p<0.05) decreased blood glucose at 30 and 60 minutes post consumption compared to white chips without impacting gastric emptying. These results suggest that potato phenolics may play a modest role in modulation of glycemic response and these effects may result in subtle differences between consumer products.
Keywords: Anthocyanins; Chlorogenic acid; Glucose transport; Glycemic Response; Potatoes; Starch Digestion.
Copyright © 2018. Published by Elsevier Inc.