High efficiency ultraviolet GaN-based vertical light emitting diodes on 6-inch sapphire substrate using ex-situ sputtered AlN nucleation layer

Opt Express. 2018 Mar 5;26(5):5111-5117. doi: 10.1364/OE.26.005111.

Abstract

We demonstrated the growth of crack-free high-quality GaN-based UV vertical LEDs (VLEDs) (λ = 365 nm) on 6-inch sapphire substrates by using an ex-situ sputtered AlN nucleation layer (NL) and compared their performance with that of UV VLEDs with an in situ low temperature (LT) AlGaN NL. The X-ray diffraction (XRD) results showed that the ex-situ AlN sample contained lower densities of screw-type and edge-type threading dislocations than the in situ AlGaN NL sample. The micro-Raman results revealed that the ex-situ AlN sample was under more compressive stress than the in situ AlGaN sample. As the current was increased, the electroluminescence peaks of both of the samples blue-shifted, reached a minimum wavelength at 1000 mA, and then slightly red-shifted. Packaged VLEDs with the ex-situ AlN NL yielded 6.5% higher light output power at 500 mA than that with the in situ AlGaN NL. The maximum EQEs of the VLED with the in situ AlGaN and ex-situ AlN NLs were 43.7% and 48.2%, respectively. Based on the XRD and Raman results, the improved light output power of the ex-situ AlN sample is attributed to the lower density of TDs.