Introduction of pyrrolidineoxy or piperidineamino group at the 4-position of quinazoline leading to novel quinazoline-based phosphoinositide 3-kinase delta (PI3Kδ) inhibitors

J Enzyme Inhib Med Chem. 2018 Dec;33(1):651-656. doi: 10.1080/14756366.2018.1444608.

Abstract

Phosphoinositide 3-kinase Delta (PI3Kδ) plays a key role in B-cell signal transduction and inhibition of PI3Kδ was confirmed to have clinical benefit in certain types of activation of B-cell malignancies. Herein, we reported a novel series of 4-pyrrolidineoxy or 4-piperidineamino substituted quinazolines, showing potent PI3Kδ inhibitory activities. Among these compounds, 12d, 14b and 14c demonstrated higher potency against PI3Kδ with the half maximal inhibitory concentration (IC50) values of 4.5, 3.0, and 3.9 nM, respectively, which were comparable to idelalisib (IC50 = 2.7 nM). The further PI3K isoforms selectivity evaluation showed that compounds 12d, 14b and 14c have excellent PI3Kδ selectivity over PI3Kα, PI3Kβ, and PI3Kγ. Moreover, compounds 12d, 14b and 14c also displayed different anti-proliferative profiles against a panel of four human B cell lines including Ramos, Raji, RPMI-8226, and SU-DHL-6. The molecular docking simulation indicated several key hydrogen bonding interactions were formed. This study suggests the introduction of pyrrolidineoxy or piperidineamino groups into the 4-position of quinazoline leads to new potent and selective PI3Kδ inhibitors.

Keywords: 4-piperidineamino; 4-pyrrolidineoxy; PI3Kδ inhibitors; anti-proliferation; selectivity.

MeSH terms

  • Class I Phosphatidylinositol 3-Kinases / antagonists & inhibitors*
  • Class I Phosphatidylinositol 3-Kinases / metabolism
  • Dose-Response Relationship, Drug
  • Humans
  • Molecular Structure
  • Piperidines / chemistry
  • Piperidines / pharmacology*
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Pyrrolidines / chemistry
  • Pyrrolidines / pharmacology*
  • Quinazolines / chemical synthesis
  • Quinazolines / chemistry
  • Quinazolines / pharmacology*
  • Structure-Activity Relationship

Substances

  • Piperidines
  • Protein Kinase Inhibitors
  • Pyrrolidines
  • Quinazolines
  • piperidine
  • Class I Phosphatidylinositol 3-Kinases
  • PIK3CD protein, human

Grants and funding

This work was supported by the National Natural Science Foundation of China [81402792] and China Postdoctoral Science Foundation [2014M560793 and 2015T81038].