Recent developments of novel electron diffraction techniques have shown to be powerful for determination of atomic resolution structures from micron- and nano-sized crystals, too small to be studied by single-crystal X-ray diffraction. In this work, the structure of a rare lysozyme polymorph is solved and refined using continuous rotation MicroED data and standard X-ray crystallographic software. Data collection was performed on a standard 200 kV transmission electron microscope (TEM) using a highly sensitive detector with a short readout time. The data collection is fast (∼3 min per crystal), allowing multiple datasets to be rapidly collected from a large number of crystals. We show that merging data from 33 crystals significantly improves not only the data completeness, overall I/σ and the data redundancy, but also the quality of the final atomic model. This is extremely useful for electron beam-sensitive crystals of low symmetry or with a preferred orientation on the TEM grid.
Keywords: MicroED; continuous rotation electron diffraction; cryo-EM; electron crystallography; electron diffraction; lysozyme; macromolecular structure; protein crystallography; protein structure; transmission electron microscopy.
Copyright © 2018 Elsevier Ltd. All rights reserved.