Designing ever more efficient and cost-effective bifunctional electrocatalysts for oxygen/hydrogen evolution reactions (OER/HER) is greatly vital and challenging. Here, a new type of binder-free hollow TiO2@Co9S8 core-branch arrays is developed as highly active OER and HER electrocatalysts for stable overall water splitting. Hollow core-branch arrays of TiO2@Co9S8 are readily realized by the rational combination of crosslinked Co9S8 nanoflakes on TiO2 core via a facile and powerful sulfurization strategy. Arising from larger active surface area, richer/shorter transfer channels for ions/electrons, and reinforced structural stability, the as-obtained TiO2@Co9S8 core-branch arrays show noticeable exceptional electrocatalytic performance, with low overpotentials of 240 and 139 mV at 10 mA cm-2 as well as low Tafel slopes of 55 and 65 mV Dec-1 for OER and HER in alkaline medium, respectively. Impressively, the electrolysis cell based on the TiO2@Co9S8 arrays as both cathode and anode exhibits a remarkably low water splitting voltage of 1.56 V at 10 mA cm-2 and long-term durability with no decay after 10 d. The versatile fabrication protocol and smart branch-core design provide a new way to construct other advanced metal sulfides for energy conversion and storage.
Keywords: arrays; cobalt sulfide; electrochemical water splitting; hydrogen evolution reaction; oxygen evolution reaction.