The present investigation was undertaken with an objective of formulating sustained release microspheres of oxcarbazepine (OXC), an anti-epileptic drug, to overcome poor patient compliance and exposure to high doses associated with currently marketed OXC dosage forms. Ionic gelation technique was used to prepare OXC microspheres by using sodium alginate along with rate controlling polymer Colocasia esculenta mucilage (CEM) matrix as well coated form. The microspheres have been characterized by differential scanning calorimetry (DSC) for understanding thermal stability and Fourier transform infrared (FT-IR) spectroscopy to investigate the chemical interaction as well as to assess the structure of drug-loaded formulation. Surface morphology of the microspheres was investigated by scanning electron microscope (SEM). The size distribution of OXC microspheres as studied by optical microscopy was in the range of 394-575 pm. The microspheres exhibited encapsulating efficiency from 75 to 92%. The release of drug from the microspheres at pH 1.2 is negligible. Under neutral conditions, the microspheres were swell and release was attributed mainly to polymer relaxation. The release pattern from microspheres followed Korsmeyer-Peppas model and the value of n > 1 showed that drug released by anomalous (non-Fickian) diffusion. The data obtained thus suggest that a microparticulate system can be successfully designed by using CEM with alginate for sustained delivery of OXC.