The ability of novel pharmacological compounds to improve outcomes in preclinical models is often not translated into clinical efficacy. Psychiatric disorders do not have biological boundaries, and identifying mechanisms to improve the translational bottleneck between preclinical and clinical research domains is an important and challenging task. Glutamate transmission is disrupted in several neuropsychiatric disorders. Metabotropic glutamate (mGlu) receptors represent a diverse class of receptors that contribute to excitatory neurotransmission. Given the wide, yet region-specific manner of expression, developing pharmacological compounds to modulate mGlu receptor activity provides an opportunity to subtly and selectively modulate excitatory neurotransmission. This review focuses on the potential involvement of mGlu5 receptor disruption in major depressive disorder and substance and/or alcohol use disorders. We provide an overview of the justification of targeting mGlu5 receptors in the treatment of these disorders, summarize the preclinical evidence for negatively modulating mGlu5 receptors as a therapeutic target for major depressive disorders and nicotine dependence, and highlight the outcomes of recent clinical trials. While the evidence of mGlu5 receptor negative allosteric modulation has been promising in preclinical investigations, these beneficial effects have not translated into clinical efficacy. In this review, we identify key challenges that may contribute to poor clinical translation and provide suggested approaches moving forward to potentially improve the translation from preclinical to clinical domains. Such approaches may increase the success of clinical trials and may reduce the translational bottleneck that exists in drug discovery for psychiatric disorders.
Keywords: Cross-species translation; Drug discovery; Major depressive disorder; Negative allosteric modulator; Substance use disorder; mGlu5 receptor.
Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.