Targeting protein biotinylation enhances tuberculosis chemotherapy

Sci Transl Med. 2018 Apr 25;10(438):eaal1803. doi: 10.1126/scitranslmed.aal1803.

Abstract

Successful drug treatment for tuberculosis (TB) depends on the unique contributions of its component drugs. Drug resistance poses a threat to the efficacy of individual drugs and the regimens to which they contribute. Biologically and chemically validated targets capable of replacing individual components of current TB chemotherapy are a major unmet need in TB drug development. We demonstrate that chemical inhibition of the bacterial biotin protein ligase (BPL) with the inhibitor Bio-AMS (5'-[N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine) killed Mycobacterium tuberculosis (Mtb), the bacterial pathogen causing TB. We also show that genetic silencing of BPL eliminated the pathogen efficiently from mice during acute and chronic infection with Mtb Partial chemical inactivation of BPL increased the potency of two first-line drugs, rifampicin and ethambutol, and genetic interference with protein biotinylation accelerated clearance of Mtb from mouse lungs and spleens by rifampicin. These studies validate BPL as a potential drug target that could serve as an alternate frontline target in the development of new drugs against Mtb.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antitubercular Agents / pharmacology*
  • Bacterial Proteins / metabolism*
  • Biotinylation / drug effects
  • Female
  • Mice
  • Mice, Inbred C57BL
  • Mycobacterium tuberculosis / drug effects
  • Mycobacterium tuberculosis / metabolism
  • Sulfurtransferases / metabolism
  • Tuberculosis / drug therapy
  • Tuberculosis / metabolism*

Substances

  • Antitubercular Agents
  • Bacterial Proteins
  • Sulfurtransferases
  • biotin synthetase