MKAD-21 Suppresses the Oncogenic Activity of the miR-21/PPP2R2A/ERK Molecular Network in Bladder Cancer

Mol Cancer Ther. 2018 Jul;17(7):1430-1440. doi: 10.1158/1535-7163.MCT-17-1049. Epub 2018 Apr 27.

Abstract

Bladder cancer represents a disease associated with significant morbidity and mortality. MiR-21 has been found to have oncogenic activity in multiple cancers, including bladder cancer, whereas inhibition of its expression suppresses tumor growth. Here, we examine the molecular network regulated by miR-21 in bladder cancer and evaluate the effects of i.v. and i.p. administration of a novel miR-21 chemical inhibitor in vivo LNA miR-21 reduced the oncogenic potential of bladder cancer cells, whereas the MKAD-21 chemically modified antisense oligo against miR-21 dose-dependently blocked xenograft growth. I.v. administration of LNA miR-21 was more effective in suppressing tumor growth than was i.p. administration. Integration of computational and transcriptomic analyses in a panel of 28 bladder cancer lines revealed a 15-gene signature that correlates with miR-21 levels. Protein Phosphatase 2 Regulatory Subunit Balpha (PPP2R2A) was one of these 15 genes and was experimentally validated as a novel miR-21 direct target gene. Gene network and molecular analyses showed that PPP2R2A is a potent negative regulator of the ERK pathway activation and bladder cancer cell proliferation. Importantly, we show that PPP2R2A acts as a mediator of miR-21-induced oncogenic effects in bladder cancer. Integrative analysis of human bladder cancer tumors and a large panel of human bladder cancer cell lines revealed a novel 15-gene signature that correlates with miR-21 levels. Importantly, we provide evidence that PPP2R2A represents a new miR-21 direct target and regulator of the ERK pathway and bladder cancer cell growth. Furthermore, i.v. administration of the MKAD-21 inhibitor effectively suppressed tumor growth through regulation of the PPP2R2A-ERK network in mice. Mol Cancer Ther; 17(7); 1430-40. ©2018 AACR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinogenesis / genetics
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • MAP Kinase Signaling System / drug effects
  • Mice
  • MicroRNAs / antagonists & inhibitors
  • MicroRNAs / genetics*
  • Oligonucleotides, Antisense / administration & dosage*
  • Protein Phosphatase 2 / genetics*
  • Urinary Bladder Neoplasms / drug therapy*
  • Urinary Bladder Neoplasms / genetics
  • Urinary Bladder Neoplasms / pathology
  • Xenograft Model Antitumor Assays

Substances

  • MIRN21 microRNA, human
  • MicroRNAs
  • Oligonucleotides, Antisense
  • PPP2R2A protein, human
  • Protein Phosphatase 2