Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods

Langmuir. 2018 May 22;34(20):5719-5727. doi: 10.1021/acs.langmuir.8b00328. Epub 2018 May 8.

Abstract

Pt-based catalysts with novel structure have attracted great attention due to their outstanding performance. In this work, H2PtCl6 was used as both precursor and etching agent to realize the shape-controlled synthesis of Pt-modified Au@Ag nanorods (NRs). During the synthesis, the as-prepared Ag shell played a crucial role in both protecting the Au NRs from being etched away by PtCl62- and leading to an unusual growth mode of Pt component. The site-specified etching and/or growth depended on the concentration of H2PtCl6, where high-yield core-shell structure or dumbbell-like structure could be obtained. The shape-controlled synthesis also led to a tunable longitudinal surface plasmon resonance from ca. 649 to 900 nm. Meanwhile, the core-shell Pt-modified Au@Ag NRs showed approximately 4-fold enhancement in catalytic reduction reaction of p-nitrophenol than that of the Au NRs, suggesting the great potential for photocatalytic reaction.

Publication types

  • Research Support, Non-U.S. Gov't