Ca2+ ions play a key role in a wide variety of environmental responses and developmental processes in plants, and several protein families with Ca2+-binding domains have evolved to meet these needs, including calmodulin (CaM) and calmodulin-like proteins (CMLs). These proteins have no catalytic activity, but rather act as sensor relays that regulate downstream targets. While CaM is well-studied, CMLs remain poorly characterized at both the structural and functional levels, even if they are the largest class of Ca2+ sensors in plants. The major structural theme in CMLs consists of EF-hands, and variations in these domains are predicted to significantly contribute to the functional versatility of CMLs. Herein, we focus on recent advances in understanding the features of CMLs from biochemical and structural points of view. The analysis of the metal binding and structural properties of CMLs can provide valuable insight into how such a vast array of CML proteins can coexist, with no apparent functional redundancy, and how these proteins contribute to cellular signaling while maintaining properties that are distinct from CaM and other Ca2+ sensors. An overview of the principal techniques used to study the biochemical properties of these interesting Ca2+ sensors is also presented.
Keywords: Arabidopsis; EF-hand; calcium-binding protein; calmodulin; conformational change; plant calmodulin-like protein; target-binding.