Plasmepsin II-III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum

Nat Commun. 2018 May 2;9(1):1769. doi: 10.1038/s41467-018-04104-z.

Abstract

Multidrug resistant Plasmodium falciparum in Southeast Asia endangers regional malaria elimination and threatens to spread to other malaria endemic areas. Understanding mechanisms of piperaquine (PPQ) resistance is crucial for tracking its emergence and spread, and to develop effective strategies for overcoming it. Here we analyze a mechanism of PPQ resistance in Cambodian parasites. Isolates exhibit a bimodal dose-response curve when exposed to PPQ, with the area under the curve quantifying their survival in vitro. Increased copy number for plasmepsin II and plasmepsin III appears to explain enhanced survival when exposed to PPQ in most, but not all cases. A panel of isogenic subclones reinforces the importance of plasmepsin II-III copy number to enhanced PPQ survival. We conjecture that factors producing increased parasite survival under PPQ exposure in vitro may drive clinical PPQ failures in the field.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimalarials / pharmacology
  • Aspartic Acid Endopeptidases / genetics*
  • Aspartic Acid Endopeptidases / metabolism
  • Cambodia
  • Cell Survival / drug effects
  • Cell Survival / genetics
  • DNA Copy Number Variations
  • Drug Resistance / genetics*
  • Gene Dosage*
  • Humans
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Plasmodium falciparum / cytology
  • Plasmodium falciparum / drug effects*
  • Plasmodium falciparum / genetics
  • Protozoan Proteins / genetics*
  • Protozoan Proteins / metabolism
  • Quinolines / pharmacology*
  • Whole Genome Sequencing

Substances

  • Antimalarials
  • Isoenzymes
  • Protozoan Proteins
  • Quinolines
  • piperaquine
  • Aspartic Acid Endopeptidases
  • plasmepsin II