Liver fat imaging-a clinical overview of ultrasound, CT, and MR imaging

Br J Radiol. 2018 Sep;91(1089):20170959. doi: 10.1259/bjr.20170959. Epub 2018 Jun 6.

Abstract

Hepatic steatosis is a frequently encountered imaging finding that may indicate chronic liver disease, the most common of which is non-alcoholic fatty liver disease. Non-alcoholic fatty liver disease is implicated in the development of systemic diseases and its progressive phenotype, non-alcoholic steatohepatitis, leads to increased liver-specific morbidity and mortality. With the rising obesity epidemic and advent of novel therapeutics aimed at altering metabolism, there is a growing need to quantify and monitor liver steatosis. Imaging methods for assessing steatosis range from simple and qualitative to complex and highly accurate metrics. Ultrasound may be appropriate in some clinical instances as a screening modality to identify the presence of abnormal liver morphology. However, it lacks sufficient specificity and sensitivity to constitute a diagnostic modality for instigating and monitoring therapy. Newer ultrasound techniques such as quantitative ultrasound show promise in turning qualitative assessment of steatosis on conventional ultrasound into quantitative measurements. Conventional unenhanced CT is capable of detecting and quantifying moderate to severe steatosis but is inaccurate at diagnosing mild steatosis and involves the use of radiation. Newer CT techniques, like dual energy CT, show potential in expanding the role of CT in quantifying steatosis. MRI proton-density fat fraction is currently the most accurate and precise imaging biomarker to quantify liver steatosis. As such, proton-density fat fraction is the most appropriate noninvasive end point for steatosis reduction in clinical trials and therapy response assessment.

Publication types

  • Review

MeSH terms

  • Humans
  • Liver / diagnostic imaging*
  • Magnetic Resonance Imaging
  • Non-alcoholic Fatty Liver Disease / diagnostic imaging*
  • Tomography, X-Ray Computed
  • Ultrasonography