Background: The objective of this study was to summarize the clinicopathological and molecular features of synchronous colorectal peritoneal metastases (CPM). We then combined clinical and pathological variables associated with synchronous CPM into a nomogram and confirmed its utilities using decision curve analysis.
Materials and methods: Synchronous metastatic colorectal cancer (mCRC) patients who received primary tumor resection and underwent KRAS, NRAS, and BRAF gene mutation detection at our center from January 2014 to September 2015 were included in this retrospective study. An analysis was performed to investigate the clinicopathological and molecular features for independent risk factors of synchronous CPM and to subsequently develop a nomogram for synchronous CPM based on multivariate logistic regression. Model performance was quantified in terms of calibration and discrimination. We studied the utility of the nomogram using decision curve analysis.
Results: In total, 226 patients were diagnosed with synchronous mCRC, of whom 50 patients (22.1%) presented with CPM. After uni- and multivariate analysis, a nomogram was built based on tumor site, histological type, age, and T4 status. The model had good discrimination with an area under the curve (AUC) at 0.777 (95% CI 0.703-0.850) and adequate calibration. By decision curve analysis, the model was shown to be relevant between thresholds of 0.10 and 0.66.
Conclusion: Synchronous CPM is more likely to happen to patients with age ≤60, right-sided primary lesions, signet ring cell cancer or T4 stage. This is the first nomogram to predict synchronous CPM. To ensure generalizability, this model needs to be externally validated.
Keywords: Clinical utilities; Decision curve analysis; Nomogram; Predictive factors; Synchronous colorectal peritoneal metastases.
Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.