Multiscale Simulations of Clavulanate Inhibition Identify the Reactive Complex in Class A β-Lactamases and Predict the Efficiency of Inhibition

Biochemistry. 2018 Jul 3;57(26):3560-3563. doi: 10.1021/acs.biochem.8b00480. Epub 2018 Jun 7.

Abstract

Clavulanate is used as an effective drug in combination with β-lactam antibiotics to treat infections of some antibiotic resistant bacteria. Here, we perform combined quantum mechanics/molecular mechanics simulations of several covalent complexes of clavulanate with class A β-lactamases KPC-2 and TEM-1. Simulations of the deacylation reactions identify the decarboxylated trans-enamine complex as being responsible for inhibition. Further, the obtained free energy barriers discriminate clinically relevant inhibition (TEM-1) from less effective inhibition (KPC-2).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Clavulanic Acid / chemistry
  • Clavulanic Acid / pharmacology*
  • Escherichia coli / chemistry
  • Escherichia coli / drug effects
  • Escherichia coli / enzymology*
  • Escherichia coli / metabolism
  • Escherichia coli Infections / drug therapy
  • Escherichia coli Infections / microbiology
  • Humans
  • Klebsiella Infections / drug therapy
  • Klebsiella Infections / microbiology
  • Klebsiella pneumoniae / chemistry
  • Klebsiella pneumoniae / drug effects
  • Klebsiella pneumoniae / enzymology*
  • Klebsiella pneumoniae / metabolism
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Thermodynamics
  • beta-Lactamase Inhibitors / chemistry
  • beta-Lactamase Inhibitors / pharmacology*
  • beta-Lactamases / chemistry
  • beta-Lactamases / metabolism*

Substances

  • beta-Lactamase Inhibitors
  • Clavulanic Acid
  • beta-lactamase KPC-2
  • beta-Lactamases
  • beta-lactamase TEM-1