Infectious diseases are often affected by specific pairings of hosts and pathogens and therefore by both of their genomes. The integration of a pair of genomes into genome-wide association mapping can provide an exquisitely detailed view of the genetic landscape of complex traits. We present a statistical method, ATOMM (Analysis with a Two-Organism Mixed Model), that maps a trait of interest to a pair of genomes simultaneously; this method makes use of whole-genome sequence data for both host and pathogen organisms. ATOMM uses a two-way mixed-effect model to test for genetic associations and cross-species genetic interactions while accounting for sample structure including interactions between the genetic backgrounds of the two organisms. We demonstrate the applicability of ATOMM to a joint association study of quantitative disease resistance (QDR) in the Arabidopsis thaliana-Xanthomonas arboricola pathosystem. Our method uncovers a clear host-strain specificity in QDR and provides a powerful approach to identify genetic variants on both genomes that contribute to phenotypic variation.
Keywords: genome-wide association studies; host–pathogen interaction; mixed-effect models; population structure; statistical genetics.