Rethinking non-inferiority: a practical trial design for optimising treatment duration

Clin Trials. 2018 Oct;15(5):477-488. doi: 10.1177/1740774518778027. Epub 2018 Jun 5.

Abstract

Background Trials to identify the minimal effective treatment duration are needed in different therapeutic areas, including bacterial infections, tuberculosis and hepatitis C. However, standard non-inferiority designs have several limitations, including arbitrariness of non-inferiority margins, choice of research arms and very large sample sizes. Methods We recast the problem of finding an appropriate non-inferior treatment duration in terms of modelling the entire duration-response curve within a pre-specified range. We propose a multi-arm randomised trial design, allocating patients to different treatment durations. We use fractional polynomials and spline-based methods to flexibly model the duration-response curve. We call this a 'Durations design'. We compare different methods in terms of a scaled version of the area between true and estimated prediction curves. We evaluate sensitivity to key design parameters, including sample size, number and position of arms. Results A total sample size of ~ 500 patients divided into a moderate number of equidistant arms (5-7) is sufficient to estimate the duration-response curve within a 5% error margin in 95% of the simulations. Fractional polynomials provide similar or better results than spline-based methods in most scenarios. Conclusion Our proposed practical randomised trial 'Durations design' shows promising performance in the estimation of the duration-response curve; subject to a pending careful investigation of its inferential properties, it provides a potential alternative to standard non-inferiority designs, avoiding many of their limitations, and yet being fairly robust to different possible duration-response curves. The trial outcome is the whole duration-response curve, which may be used by clinicians and policymakers to make informed decisions, facilitating a move away from a forced binary hypothesis testing paradigm.

Keywords: Antimicrobial resistance; design; duration of therapy; flexible modelling; non-inferiority; randomised trial.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drug Resistance, Microbial / drug effects
  • Equivalence Trials as Topic*
  • Humans
  • Research Design*