A key challenge to the commercialization of solution-processed solar cells is a proper understanding of the morphological variations during long periods, particularly under light-soaking conditions. Many research groups have competitively reported solvent vapor annealing (SVA)-treated small-molecule devices with efficiency rates exceeding 11%; however, their light-soaking effects have been rarely studied. Here, we investigate the morphological changes in the light-soaked devices with/without SVA treatments depending on the illumination time via three-dimensional observations. From the results, we found that the trends of morphological variations differ in the surface and bulk parts of the active film and that the difference is closely related to the device performance capabilities. Therefore, our research will enhance the underlying knowledge of the light-soaking effect on active morphologies over long term.
Keywords: crystalline structure; light-soaking; long-term stability; small-molecule solar cell; solvent vapor annealing.