Magnetic sensors based on magnetoresistance effects have promising application prospects due to their excellent sensitivity and their advantages in terms of integration. However, the competition between higher sensitivity and a larger measuring range remains a problem. Here, we propose a novel mechanism for designing magnetoresistive sensors: probing the perpendicular field by detecting the expansion of the elastic magnetic domain wall in the free layer of a spin valve or a magnetic tunnel junction. The performances of devices based on this mechanism, such as the sensitivity and the measuring range, can be tuned by manipulating the geometry of the device. This can be achieved without changing the intrinsic properties of the material, thus promising a higher integration level and a better performance. The mechanism is theoretically explained based on the experimental results. Two examples are proposed and their functionality and performances are verified via a micromagnetic simulation.