Soluble amyloid-beta buffering by plaques in Alzheimer disease dementia versus high-pathology controls

PLoS One. 2018 Jul 6;13(7):e0200251. doi: 10.1371/journal.pone.0200251. eCollection 2018.

Abstract

An unanswered question regarding Alzheimer disease dementia (ADD) is whether amyloid-beta (Aβ) plaques sequester toxic soluble Aβ species early during pathological progression. We previously reported that the concentration of soluble Aβ aggregates from patients with mild dementia was higher than soluble Aβ aggregates from patients with modest Aβ plaque burden but no dementia. The ratio of soluble Aβ aggregate concentration to Aβ plaque area fully distinguished these groups of patients. We hypothesized that initially plaques may serve as a reservoir or sink for toxic soluble Aβ aggregates, sequestering them from other targets in the extracellular space and thereby preventing their toxicity. To initially test a generalized version of this hypothesis, we have performed binding assessments using biotinylated synthetic Aβ1-42 peptide. Aβ1-42-biotin peptide was incubated on unfixed frozen sections from non-demented high plaque pathology controls and patients with ADD. The bound peptide was measured using ELISA and confocal microscopy. We observed no quantitative difference in Aβ binding between the groups using either method. Further testing of the buffering hypothesis using various forms of synthetic and human derived soluble Aβ aggregates will be required to definitively address the role of plaque buffering as it relates to ADD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease / metabolism
  • Alzheimer Disease / pathology*
  • Amyloid beta-Peptides / metabolism*
  • Disease Progression
  • Female
  • Frontal Lobe / metabolism
  • Frontal Lobe / pathology*
  • Humans
  • Male
  • Plaque, Amyloid / metabolism
  • Plaque, Amyloid / pathology*

Substances

  • Amyloid beta-Peptides