This paper proposes a computer assisted diagnostic (CAD) system for the detection of melanoma in dermoscopy images. Clinical findings have concluded that in case of melanoma, the lesion borders exhibit differential structures such as pigment networks and streaks as opposed to normal skin spots, which have smoother borders. We aim to validate these findings by performing segmentation of the skin lesions followed by an extraction of the peripheral region of the lesion that is subjected to feature extraction and classification for detecting melanoma. For segmentation, we propose a novel active contours based method that takes an initial lesion contour followed by the usage of Kullback-Leibler divergence between the lesion and skin to fit a curve precisely to the lesion boundaries. After segmentation of the lesion, its periphery is extracted to detect melanoma using image features that are based on local binary patterns. For validation of our algorithms, we have used the publicly available PH dermoscopy dataset. An extensive experimental analysis reveals two important findings: 1). The proposed segmentation method mimics the ground truth data accurately, outperforming the other methods that have been used for comparison purposes, and 2). The most significant melanoma characteristics in the lesion actually lie on the lesion periphery.