Radiopaque Hemocompatible Ruminant-Sourced Gut Material with Antimicrobial Physiognomies for Biomedical Applications in Diabetics

ACS Omega. 2017 Mar 31;2(3):755-764. doi: 10.1021/acsomega.6b00373. Epub 2017 Mar 2.

Abstract

This study comprises the fabrication of a radiopaque gut material with its mechanical properties conforming to the US Pharmacopeia guidelines giving an antimicrobial advantage for suture application, especially in conditions such as diabetes mellitus, which has a high wound infection rate. Schiff base cross-linking iodination of the material is evinced by the spectroscopic studies, and antimicrobial properties owing to released iodine are evinced through in vitro studies. Modified gut sutures demonstrated favorable physicomechanical features such as appropriate tensile strength (440 ± 20 MPa) and knot strength (270 ± 20) alongside a mean radiopacity value of 139.0 ± 10 in comparison with that of the femoral shaft with 160 ± 10. The diabetic model showed absence of clinical signs of infection, supported by wound swab culture and the absence of necrosis in histology. Hemocompatibility studies evinced the absence of contact platelet activation and hemolysis alongside the customary coagulation response. These promising results highlight the stimulating potential of the process in the development of biomedical applications, necessitating persistent studies for its evidence-based applicability, particularly in diabetic patients.