Mitomycin C (MC) is an anticancer agent that alkylates DNA to form monoadducts and interstrand cross-links. Decarbamoylmitomycin C (DMC) is an analogue of MC lacking the carbamate on C10. The major DNA adducts isolated from treatment of culture cells with MC and DMC are N2-deoxyguanosine (dG) adducts and adopt an opposite stereochemical configuration at the dG-mitosene bond. To elucidate the molecular mechanisms of DMC-DNA alkylation, we have reacted short oligonucleotides, calf thymus, and M. luteus DNA with DMC using biomimetic conditions. These experiments revealed that DMC is able to form two stereoisomeric deoxyadenosine (dA) adducts with DNA under bifuntional reduction conditions and at low temperature. The dA-DMC adducts formed were detected and quantified by HPLC analysis after enzymatic digestion of the alkylated DNA substrates. Results revealed the following rules for DMC dA alkylation: (i) DMC dA adducts are formed at a 48- to 4-fold lower frequency than dG adducts, (ii) the 5'-phosphodiester linkage of the dA adducts is resistant to snake venom diesterase, (iii) end-chain dA residues are more reactive than internal ones in duplex DNA, and (iv) nucleophilic addition by dA occurs on both faces of DMC and the ratio of stereoisomeric dA adducts formed is dependent on the end bases located at the 3' or 5' position. A key finding was to discover that temperature plays a determinant role in the regioselectivity of duplex DNA alkylation by DMC: at 0 °C, both dA and dG alkylation occur, whereas at 37 °C, DMC preferentially alkylates dG residues.