DNA breakpoint assay reveals a majority of gross duplications occur in tandem reducing VUS classifications in breast cancer predisposition genes

Genet Med. 2019 Mar;21(3):683-693. doi: 10.1038/s41436-018-0092-7. Epub 2018 Jul 28.

Abstract

Purpose: Gross duplications are ambiguous in terms of clinical interpretation due to the limitations of the detection methods that cannot infer their context, namely, whether they occur in tandem or are duplicated and inserted elsewhere in the genome. We investigated the proportion of gross duplications occurring in tandem in breast cancer predisposition genes with the intent of informing their classifications.

Methods: The DNA breakpoint assay (DBA) is a custom, paired-end, next-generation sequencing (NGS) method designed to capture and detect deep-intronic DNA breakpoints in gross duplications in BRCA1, BRCA2, ATM, CDH1, PALB2, and CHEK2.

Results: DBA allowed us to ascertain breakpoints for 44 unique gross duplications from 147 probands. We determined that the duplications occurred in tandem in 114 (78%) carriers from this cohort, while the remainder have unknown tandem status. Among the tandem gross duplications that were eligible for reclassification, 95% of them were upgraded to pathogenic.

Conclusion: DBA is a novel, high-throughput, NGS-based method that informs the tandem status, and thereby the classification of, gross duplications. This method revealed that most gross duplications in the investigated genes occurred in tandem and resulted in a pathogenic classification, which helps to secure the necessary treatment options for their carriers.

Keywords: Alu; Breakpoint; HBOC; Tandem duplication; VUS.

MeSH terms

  • Ataxia Telangiectasia Mutated Proteins / genetics
  • BRCA1 Protein / genetics
  • BRCA2 Protein / genetics
  • Breast Neoplasms / genetics*
  • Checkpoint Kinase 2 / genetics
  • Cohort Studies
  • DNA / genetics
  • DNA Breaks
  • Fanconi Anemia Complementation Group N Protein / genetics
  • Female
  • Gene Duplication / genetics
  • Genetic Predisposition to Disease / genetics
  • Genome
  • Germ-Line Mutation
  • High-Throughput Nucleotide Sequencing / methods*
  • Humans
  • Mutation
  • Sequence Analysis, DNA / methods
  • Tandem Repeat Sequences / genetics*

Substances

  • BRCA1 Protein
  • BRCA1 protein, human
  • BRCA2 Protein
  • BRCA2 protein, human
  • Fanconi Anemia Complementation Group N Protein
  • PALB2 protein, human
  • DNA
  • Checkpoint Kinase 2
  • ATM protein, human
  • Ataxia Telangiectasia Mutated Proteins
  • CHEK2 protein, human