Understanding the relationship between polymer chemical structure and its performance of photoacoustic imaging (PAI) and photothermal therapy (PTT) is important for developing ideal PAI/PTT agents. In this report, four semiconducting polymer nanoparticles (SPNs) with different donor-acceptor architectures are self-assembled for highly effective PAI-guided PTT. In particular, SPN1 with the longest π-conjugation length and the highest mass extinction coefficient which are beneficial for intramolecular charge transfer as well as light harvesting, exhibits the highest photothermal conversion efficiency up to 52.6%. Moreover, the as-prepared SPN1 possess good water-dispersibility, robust size-stability and excellent photothermal properties. Furthermore, the SPN1 not only exhibits a remarkable cancer cell-killing ability but also shows a prominent tumor inhibition capacity. Finally, the as-prepared water-dispersible SPN1 displays good biocompatibility and biosafety, making it a promising candidate for future biomedical applications. Considering the plenty of near-infrared absorbing semiconducting polymer available, our work provides fundamental insights for rational design and preparation of highly efficient SPN-based PAI/PTT agents for cancer theranostics.
Keywords: Cancer theranostics; High photothermal conversion efficiency; Photoacoustic imaging; Photothermal therapy; Semiconducting polymer nanoparticles.
Copyright © 2018 Elsevier Ltd. All rights reserved.