The excessive supply of contaminants from urban areas to rivers during the last centuries has led to deleterious impacts on aquatic ecosystems. The sources, the behavior, and the dynamics of these contaminants must be better understood in order to reduce this excessive anthropogenic pollution. Accordingly, the current research investigated the particle-bound trace element (TE) contamination of the 900-km2 Orge River (Seine basin, France) and the potential sources of these particles (agricultural or forest soils, channel banks, road deposited sediments), through the analysis of multiple fallout radionuclides, elemental geochemistry, and lead isotopic composition on suspended particulate matter (SPM) collected during a hydrological year at four stations following an increasing urbanization gradient (300 to 5000 inhab.km-2). Fallout radionuclide measurements showed an increasing contribution of recently eroded particles from urban areas to the SPM in downstream direction. However, this contribution varied depending on hydrological conditions. A greater contribution of particles originating from urban areas was observed during low stage periods. On the contrary, the contribution of agricultural soils and channel banks that are less enriched in contaminants and fallout radionuclides was higher during seasonal floods, which explained the dilution of radionuclide contents in sediment transiting the river during those events. Trace element contamination of SPM in Cu, Zn, Pb, and Sb increased from moderate to significant levels with urban pressure in downstream direction (with corresponding enrichment factors raising from 2 to 6). In addition, Pb isotopic ratios indicated that the main source of Pb corresponded to the "urban" signature found in road deposited sediments. The low variations in lead isotope ratios found in the SPM for contrasting hydrological conditions demonstrated the occurrence of a single source of Pb contamination. These results demonstrate the need to better manage urban runoff during both flood and low precipitation events to prevent the supply of diffuse particle-bound contamination to rivers draining urban areas.
Keywords: Lead isotopes; Legacy contamination; Recent sediment; Road deposited sediment; Sediment fingerprinting.