Despite being considered the gold standard for brachytherapy dosimetry, Monte Carlo (MC) has yet to be implemented into a software for brachytherapy treatment planning. The purpose of this work is to present RapidBrachyMCTPS, a novel treatment planning system (TPS) for brachytherapy applications equipped with a graphical user interface (GUI), optimization tools and a Geant4-based MC dose calculation engine, RapidBrachyMC. Brachytherapy sources and applicators were implemented in RapidBrachyMC and made available to the user via a source and applicator library in the GUI. To benchmark RapidBrachyMC, TG-43 parameters were calculated for the microSelectron v2 (192Ir) and SelectSeed (125I) source models and were compared against previously validated MC brachytherapy codes. The performance of RapidBrachyMC was evaluated for a prostate high dose rate case. To assess the accuracy of RapidBrachyMC in a heterogeneous setup, dose distributions with a cylindrical shielded/unshielded applicator were validated against film measurements in a Solid WaterTM phantom. TG-43 parameters calculated using RapidBrachyMC generally agreed within 1%-2% of the results obtained in previously published work. For the prostate case, clinical dosimetric indices showed general agreement with Oncentra TPS within 1%. Simulation times were on the order of minutes on a single core to achieve uncertainties below 2% in voxels within the prostate. The calculation time was decreased further using the multithreading features of Geant4. In the comparison between MC-calculated and film-measured dose distributions, at least 95% of points passed the 3%/3 mm gamma index criteria in all but one case. RapidBrachyMCTPS can be used as a post-implant dosimetry toolkit, as well as for MC-based brachytherapy treatment planning. This software is especially well suited for the development of new source and applicator models.