The filamentous fungus Aspergillus niveus produced extracellular antifungal chitinase when cultured under submerged fermentation (SbmF) using crab shells as the carbon source. Maximal chitinase production was achieved at 192 h of cultivation using minimal medium containing 1% chitin. The enzyme was purified 1.97-fold with 40% recovery by ammonium sulfate precipitation and Sephadex G-100 gel filtration. The molecular mass was estimated to be 44 kDa by both 12% SDS-PAGE and Sepharose CL-6B gel filtration. Maximal A. niveus chitinase activity was obtained at 65 °C and pH 5.0. The enzyme was fully stable at 60 °C for up to 120 min and the enzymatic activity was increased by Mn2+. In the presence of reducing and denaturing compounds, the enzyme activity was not drastically affected. The chitinase was able to hydrolyze colloidal chitin, azure chitin, and 4-nitrophenyl N-acetyl-β-D glucosaminide; for the latter, the K0.5 and maximal velocity (Vmax) were 3.51 mM and 9.68 U/mg of protein, respectively. The A. niveus chitinase presented antifungal activity against Aspergillus niger (MIC = 84 µg/mL), A. fumigatus (MIC = 21 µg/mL), A. flavus (MIC = 24 µg/mL), A. phoenicis (MIC = 24 µg/mL), and Paecilomyces variotii (MIC = 21 µg/mL). The fungus A. niveus was able to produce a thermostable and denaturation-resistant chitinase able to inhibit fungal development, signaling its biotechnological potential.
Keywords: Antifungal activity; Aspergillus niveus; Chitin; Chitinase; Fungal hydrolases.