Alzheimer's disease (AD) represents a major healthcare burden with no effective treatment. The glutamate modulator, riluzole, was shown to reverse many AD-related gene expression changes and improve cognition in aged rats. However, riluzole's effect on amyloid beta (Aβ) pathology, a major histopathological hallmark of AD, remains unclear. 5XFAD transgenic mice, which harbor amyloid β precursor protein (APP) and presenilin mutations and exhibit early Aβ accumulation, were treated with riluzole from 1 to 6 months of age. Riluzole significantly enhanced cognition and reduced Aβ42, Aβ40, Aβ oligomers levels, and Aβ plaque load in 5XFAD mice. RNA-Sequencing showed that riluzole reversed many gene expression changes observed in the hippocampus of 5XFAD mice, predominantly in expression of canonical gene markers for microglia, specifically disease-associated microglia (DAM), as well as neurons and astrocytes. Central to the cognitive improvements observed, riluzole reversed alterations in NMDA receptor subunits gene expression, which are essential for learning and memory. These data demonstrate that riluzole exerts a disease modifying effect in an Aβ mouse model of early-onset familial AD.