Assembly and comparative analysis of the complete mitochondrial genome sequence of Sophora japonica 'JinhuaiJ2'

PLoS One. 2018 Aug 16;13(8):e0202485. doi: 10.1371/journal.pone.0202485. eCollection 2018.

Abstract

Sophora japonica L. (Faboideae, Leguminosae) is an important traditional Chinese herb with a long history of cultivation. Its flower buds and fruits contain abundant flavonoids, and therefore, the plants are cultivated for the industrial extraction of rutin. Here, we determined the complete nucleotide sequence of the mitochondrial genome of S. japonica 'JinhuaiJ2', the most widely planted variety in Guangxi region of China. The total length of the mtDNA sequence is 484,916 bp, with a GC content of 45.4%. Sophora japonica mtDNA harbors 32 known protein-coding genes, 17 tRNA genes, and three rRNA genes with 17 cis-spliced and five trans-spliced introns disrupting eight protein-coding genes. The gene coding and intron regions, and intergenic spacers account for 7.5%, 5.8% and 86.7% of the genome, respectively. The gene profile of S. japonica mitogenome differs from that of the other Faboideae species by only one or two gene gains or losses. Four of the 17 cis-spliced introns showed distinct length variations in the Faboideae, which could be attributed to the homologous recombination of the short repeats measuring a few bases located precisely at the edges of the putative deletions. This reflects the importance of small repeats in the sequence evolution in Faboideae mitogenomes. Repeated sequences of S. japonica mitogenome are mainly composed of small repeats, with only 20 medium-sized repeats, and one large repeat, adding up to 4% of its mitogenome length. Among the 25 pseudogene fragments detected in the intergenic spacer regions, the two largest ones and their corresponding functional gene copies located in two different sets of medium-sized repeats, point to their origins from homologous recombinations. As we further observed the recombined reads associated with the longest repeats of 2,160 bp with the PacBio long read data set of just 15 × in depth, repeat mediated homologous recombinations may play important role in the mitogenomic evolution of S. japonica. Our study provides insightful knowledge to the genetic background of this important herb species and the mitogenomic evolution in the Faboideae species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Composition
  • DNA, Mitochondrial / genetics
  • DNA, Plant / genetics
  • Genes, Plant
  • Genome, Mitochondrial*
  • Homologous Recombination
  • Introns
  • Mitochondria / genetics
  • Phylogeny
  • Plant Proteins / genetics
  • RNA, Plant / genetics
  • RNA, Ribosomal / genetics
  • RNA, Transfer / genetics
  • Sequence Analysis, DNA
  • Sophora / genetics*
  • Whole Genome Sequencing

Substances

  • DNA, Mitochondrial
  • DNA, Plant
  • Plant Proteins
  • RNA, Plant
  • RNA, Ribosomal
  • RNA, Transfer

Grants and funding

This project is funded by the National Science Foundation of China (31600171, 31470314), Fairy Lake Science Foundation (FLSF2017-03), Natural Science Foundation of Guangxi (2017JXNSFBA198011), Basic Business Expenses Project of Guangxi Academy of Sciences (2017YJJ23010), Agricultural Science and Technology Achievement Transformation Fund Project (Guikezhuan1222017-13). The funder [BGI-Shenzhen] provided support in the form of salaries for authors [Y. Liu & W. Mu], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.