Scientifically sound, risk-informed evaluation of chemicals is essential to protecting public health. Systematically leveraging information from exposure, toxicology, and epidemiology studies can provide a holistic understanding of how real-world exposure to chemicals may impact the health of populations, including sensitive and vulnerable individuals and life-stages. Increasingly, public health policy makers are employing toxicokinetic (TK) modeling tools to integrate these data streams and predict potential human health impact. Development of a suite of tools for predicting internal exposure, including physiologically-based toxicokinetic (PBTK) models, is being driven by needs to address large numbers of data-poor chemicals efficiently, translate bioactivity, and mechanistic information from new in vitro test systems, and integrate multiple lines of evidence to enable scientifically sound, risk-informed decisions. New modeling approaches are being designed "fit for purpose" to inform specific decision contexts, with applications ranging from rapid screening of hundreds of chemicals, to improved prediction of risks during sensitive stages of development. New data are being generated experimentally and computationally to support these models. Progress to meet the demand for internal exposure and PBTK modeling tools will require transparent publication of models and data to build credibility in results, as well as opportunities to partner with decision makers to evaluate and build confidence in use of these for improved decisions that promote safe use of chemicals.
Keywords: Epidemiology; Exposure modeling; PBPK modeling.