Nd1-S is the nuclear-localizing short variant form of Nd1 (Ivns1abp) encoding a Kelch family transcription factor. While the function of Nd1 has been investigated in the context of metastasis and doxorubicin-induced cardiotoxicity, little is known about its role in hematopoiesis. In this study, we investigated the function of Nd1-S in hematopoiesis by transplanting the Nd1-S-overexpressing murine hematopoietic stem and progenitor cells (HSPCs) into recipient mice (Nd1-S mice). Enforced expression of Nd1-S led to erythroid and megakaryocyte dysplasia, demonstrated by dramatically decreased red blood cells and platelets, and megakaryocytes in the peripheral blood and bone marrow of the Nd1-S mice. Moreover, phenotypic megakaryocyte-erythroid progenitors (MEPs) accumulated in these Nd1-S mice with aberrant morphology and defective colony-forming capability. Furthermore, these phenotypic MEPs showed impaired pathways regulating erythroid differentiation and megakaryocyte development. Therefore, our study provides de novo evidence that overexpression of Nd1-S in HSPCs leads to erythroid and megakaryocyte dysplasia in vivo by targeting MEPs.
Keywords: Nd1; erythroid dysplasia; megakaryocyte dysplasia; overexpression; transplantation.