The system-neurophysiological basis for how methylphenidate modulates perceptual-attentional conflicts during auditory processing

Hum Brain Mapp. 2018 Dec;39(12):5050-5061. doi: 10.1002/hbm.24344. Epub 2018 Aug 22.

Abstract

The ability to selectively perceive and flexibly attend to relevant sensory signals in the environment is essential for action control. Whereas neuromodulation of sensory or attentional processing is often investigated, neuromodulation of interactive effects between perception and attention, that is, high attentional control demand when the relevant sensory information is perceptually less salient than the irrelevant one, is not well understood. To fill this gap, this pharmacological-electroencephalogram (EEG) study applied an intensity-modulated, focused-attention dichotic listening paradigm together with temporal EEG signal decomposition and source localization analyses. We used a double-blind MPH/placebo crossover design to delineate the effects of methylphenidate (MPH)-a dopamine/norepinephrine transporter blocker-on the resolution of perceptual-attentional conflicts, when perceptual saliency and attentional focus favor opposing ears, in healthy young adults. We show that MPH increased behavioral performance specifically in the condition with the most pronounced conflict between perceptual saliency and attentional focus. On the neurophysiological level, MPH effects in line with the behavioral data were observed after accounting for intraindividual variability in the signal. More specifically, MPH did not show an effect on stimulus-related processes but modulated the onset latency of processes between stimulus evaluation and responding. These modulations were further shown to be associated with activation differences in the temporoparietal junction (BA40) and the superior parietal cortex (BA7) and may reflect neuronal gain modulation principles. The findings provide mechanistic insights into the role of modulated dopamine/norepinephrine transmitter systems for the interactions between perception and attention.

Keywords: EEG; attention; auditory; conflict; dopamine; methylphenidate; norepinephrine; perception; source localization.

Publication types

  • Clinical Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Attention / drug effects*
  • Auditory Perception / drug effects*
  • Cerebral Cortex / drug effects*
  • Conflict, Psychological*
  • Cross-Over Studies
  • Dopamine Uptake Inhibitors / pharmacology
  • Double-Blind Method
  • Electroencephalography / methods*
  • Evoked Potentials / physiology*
  • Female
  • Humans
  • Male
  • Methylphenidate / administration & dosage
  • Methylphenidate / pharmacology*
  • Neurotransmitter Uptake Inhibitors / administration & dosage
  • Neurotransmitter Uptake Inhibitors / pharmacology*
  • Norepinephrine Plasma Membrane Transport Proteins / antagonists & inhibitors
  • Psychomotor Performance / drug effects*
  • Young Adult

Substances

  • Dopamine Uptake Inhibitors
  • Neurotransmitter Uptake Inhibitors
  • Norepinephrine Plasma Membrane Transport Proteins
  • Methylphenidate