Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3 N4 for Enhanced Photocatalytic CO2 Reduction

Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13570-13574. doi: 10.1002/anie.201808930. Epub 2018 Sep 17.

Abstract

Halide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome. To circumvent these obstacles, we anchored CsPbBr3 QDs (CPB) on NHx -rich porous g-C3 N4 nanosheets (PCN) to construct the composite photocatalysts via N-Br chemical bonding. The 20 CPB-PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 μmol h-1 g-1 in acetonitrile/water for photocatalytic reduction of CO2 to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr3 QDs. This study opens up new possibilities of using halide perovskite QDs for photocatalytic application.

Keywords: CsPbBr3 quantum dots; N−Br chemical bonding; carbon dioxide; photocatalytic reduction; porous g-C3N4.