Use of alcohol, cannabis and opioids is highly prevalent and is associated with global disease burden and high economic costs. The exact pathophysiology of abuse or addiction associated with these sedative substances is not completely understood, but previous research implicates the important role of the striatal dopamine system in the addiction process. Multiple studies investigated changes in the striatal dopamine systems of users of sedative substances, but currently these results are very heterogeneous. Therefore, we conducted a meta-analysis of in vivo neuroimaging studies investigating dopaminergic alterations in the striatum of users of alcohol, opioids or cannabis. Analyses for each substance were conducted separately for the availability of D2/D3 dopamine receptors, dopamine transporters and dopamine synthesis capacity. In total, 723 substance users and 752 healthy controls were included. The results indicated a significant lower striatal D2/D3 receptor availability in alcohol users compared to controls (g = 0.46) but no difference in dopamine transporter availability or dopamine synthesis capacity. Our analysis indicated that changes of dopamine receptors and transporters are moderated by the duration of abstinence. Comparing opioid users with controls revealed a significant lower D2/D3 receptor availability (g = 1.17) and a significantly lower transporter availability (g = 1.55) in opioid users. For cannabis users, there was no significant difference in receptor availability compared to controls and too few studies provided information on dopamine transporter availability or synthesis capacity. Our analysis provides strong evidence for a central role of the striatal dopamine system in use of alcohol or opioids. Further studies are needed to clarify the impact of the dopamine system in cannabis users.