Background: Acute ischemic stroke is a leading cause of mortality and long-term disability, and profiles of endothelial progenitor cells (EPCs) reflect the degree of endothelial impairment. This study tested the hypothesis that hyperbaric oxygen therapy (HBOT) both improves the clinical short-term outcomes and increases the number of circulating EPCs and antioxidant capacity.
Methods: The numbers of circulating EPCs [CD133+/CD34+ (%), KDR+/CD34+ (%)], biomarkers for oxidative stress (thiols and thiobarbituric acid-reactive substances), and clinical scores (National Institutes of Health Stroke Scale [NIHSS], Barthel index [BI], and modified Rankin Scale [MRS]) were prospectively evaluated in 25 patients with acute non-cardioembolic stroke under HBOT at two time points (pre- and post-HBOT). The biomarkers and clinical scores were compared with those of 25 age- and sex-matched disease controls.
Results: The numbers of KDR+/CD34+ (%) in the HBOT group following HBOT increased significantly, whereas the numbers of CD133+/CD34+ (%) also showed a tendency to increase without statistical significance. The mean high-sensitivity C-reactive protein levels showed significant decrease post-HBOT follow-up in the HBOT group. The changes in KDR+/CD34+EPC (%) numbers were positively correlated with changes in clinical outcomes scores (BI, NIHSS, and MRS) in the HBOT group.
Conclusions: Based on the results of our study, HBOT can both improve short-term clinical outcomes and increase the number of circulating EPCs in patients with acute non-cardioembolic stroke.
Keywords: Barthel index; Endothelial progenitor cells; Hyperbaric oxygen therapy; Modified Rankin Scale; National Institutes of Health Stroke Scale; Non-cardioembolic stroke.