Focused research targeting an identified clinical problem may result in more rapid development of medical devices, technologies, and surgical techniques that directly impact patient care. These medical advances to improve patient care may be expedited by adopting an interactive translational research model in which inventors, designers, and engineers work in collaboration with surgeons. In addition, cadaveric simulation is a high-fidelity model that is bridging the translational and logistical gap to bring new surgical devices, technologies, and techniques to patients. We describe the partnership between the University of Rochester and LSI SOLUTIONS® in which an interactive translational research model utilizing cadaveric simulation has been successfully applied to accelerate bringing minimally invasive cardiac surgical techniques and innovative devices to patients.
Keywords: Translational research; medical devices; minimally invasive cardiac surgery (MICS); simulation training.