One-dimensional (1D) nanostructures of II-VI ternary alloys are of prime interest due to their compatible features of both 1D nanostructures and semiconducting alloys. These features can facilitate materials with tunable bandgaps, which are crucial to the performance of photoelectrical devices. Herein, we present a comprehensive review summarizing the recent research progress pertinent to the diverse synthesis, optical fundamentals and applications of 1D nanostructures of II-VI ternary alloys. Considering multifunctional applications, the different growth mechanisms of the rational design and synthesis techniques are highlighted. Investigations of the fundamentals of the optical and photoelectrical properties of ternary alloyed II-VI semiconductors via the corresponding characterization techniques are also particularly discussed. Furthermore, we present the versatile potential practical applications of these materials. Finally, we extend the discussion to the most recent research advances on quaternary alloys, which provides a possible prospective forecast for the sustained development of alloyed 1D nanostructures.