Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse

Exp Eye Res. 2018 Nov:176:258-265. doi: 10.1016/j.exer.2018.09.006. Epub 2018 Sep 17.

Abstract

Neuroprotection is among the potential treatment options for glaucoma and other retinal pathologies characterized by the loss of retinal ganglion cells (RGCs). Here, we examined the impact of a neural stem (NS) cell-based intravitreal co-administration of two neuroprotective factors on the survival of axotomized RGCs. To this aim we used lentiviral vectors to establish clonal NS cell lines ectopically expressing either glial cell line-derived neurotrophic factor (GDNF) or ciliary neurotrophic factor (CNTF). The modified NS cell lines were intravitreally injected either separately or as a 1:1 mixture into adult mice one day after an optic nerve lesion, and the number of surviving RGCs was determined in retinal flat-mounts two, four and eight weeks after the lesion. For the transplantation experiments, we selected a GDNF- and a CNTF-expressing NS cell line that promoted the survival of axotomized RGCs with a similar efficacy. Eight weeks after the lesion, GDNF-treated retinas contained 3.8- and CNTF-treated retinas 3.7-fold more RGCs than control retinas. Of note, the number of surviving RGCs was markedly increased when both factors were administered simultaneously, with 14.3-fold more RGCs than in control retinas eight weeks after the lesion. GDNF and CNTF thus potently and synergistically rescued RGCs from axotomy-induced cell death, indicating that combinatorial neuroprotective approaches represent a promising strategy to effectively promote the survival of RGCs under pathological conditions.

Keywords: Axotomy; Ciliary neurotrophic factor; Glial cell line-derived neurotrophic factor; Lentiviral vector; Neural stem cell; Neuroprotection; Retinal ganglion cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axotomy
  • Cell Survival / drug effects
  • Cells, Cultured
  • Ciliary Neurotrophic Factor / administration & dosage*
  • Ciliary Neurotrophic Factor / metabolism
  • Drug Synergism
  • Genetic Vectors
  • Glial Cell Line-Derived Neurotrophic Factor / pharmacology*
  • Lentivirus / genetics
  • Mice
  • Mice, Inbred C57BL
  • Nerve Crush
  • Neural Stem Cells / metabolism
  • Neural Stem Cells / transplantation*
  • Neuroprotective Agents / administration & dosage*
  • Neuroprotective Agents / metabolism
  • Optic Nerve Injuries
  • Retinal Ganglion Cells / drug effects*

Substances

  • Ciliary Neurotrophic Factor
  • Glial Cell Line-Derived Neurotrophic Factor
  • Neuroprotective Agents