TiO2 is an excellent photocatalytic and photovoltaic material but suffers low efficiency because of deep trap states giving rise to fast charge and energy losses. Using a combination of time-domain density functional theory and nonadiabatic molecular dynamics, we demonstrate that grain boundaries (GBs), which are common in polycrystalline TiO2, accelerate nonradiative electron-hole recombination by a factor of 3. Despite GBs increase the band gap without creating deep trap states, and accelerate coherence loss, they enhance nonadiabatic electron-phonon coupling, and facilitate the relaxation. Importantly, electrons accumulated at the boundaries together with the relatively long-lived excite state favor photocatalytic reaction. Our study rationalizes the experimental observations and provides valuable perspectives for improving the device performance by defect engineering.