Background: Working memory (WM) has been a central focus of cognitive neuroscience research because WM is a resource that is involved in many different cognitive operations. The goal of this study was to evaluate the clinical utility of WM paradigms developed in the basic cognitive neuroscience literature, including methods designed to estimate storage capacity without contamination by lapses of attention.
Methods: A total of 61 people with schizophrenia, 49 with schizoaffective disorder, 47 with bipolar disorder with psychosis, and 59 healthy volunteers were recruited. Participants received multiple WM tasks, including two versions each of a multiple Change Detection paradigm, a visual Change Localization paradigm, and a Running Span task.
Results: Healthy volunteers performed better than the combined patient group on the visual Change Localization and running span measures. The multiple Change Detection tasks provided mixed evidence about WM capacity reduction in the patient groups, but a mathematical model of performance suggested that the patient groups differed from controls in their rate of attention lapsing. The 3 patient groups performed similarly on the WM tasks. Capacity estimates from the Change Detection and Localization tasks showed significant correlations with functional capacity and functional outcome.
Conclusions: The patient groups generally performed in a similarly impaired fashion across tasks, suggesting that WM impairment and attention lapsing are general features of psychotic disorders. Capacity estimates from the Change Localization and Detection tasks were related to functional capacity and outcome, suggesting that these methods may be useful in a clinical context.
Keywords: capacity limitations; cognitive impairment; psychosis; schizophrenia; working memory.
© The Author(s) 2018. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.