Objective: To perform a systematic review of the small molecule metabolism studies of osteoarthritis utilising nuclear magnetic resonance (NMR) or mass spectroscopy (MS) analysis (viz., metabolomics or metabonomics), thereby providing coherent conclusions and reference material for future study.
Method: We applied PRISMA guidelines (PROSPERO 95068) with the following MESH terms: 1. "osteoarthritis" AND ("metabolic" OR "metabonomic" OR "metabolomic" OR "metabolism") 2. ("synovial fluid" OR "cartilage" OR "synovium" OR "serum" OR "plasma" OR "urine") AND ("NMR" or "Mass Spectroscopy"). Databases searched were "Medline" and "Embase". Studies were searched in English and excluded review articles not containing original research. Study outcomes were significant or notable metabolites, species (human or animal) and the Newcastle-Ottawa Score.
Results: In the 27 studies meeting the inclusion criteria, there was a shift towards anaerobic and fatty acid metabolism in OA disease, although whether this represents the inflammatory state remains unclear. Lipid structure and composition was altered within disease subclasses including phosphatidyl choline (PC) and the sphingomyelins. Macromolecular proteoglycan destruction was described, but the correlation to disease factors was not demonstrated. Collated results suggested arachidonate signalling pathways and androgen sex hormones as future metabolic pathways for investigation.
Conclusion: Our meta-analysis demonstrates significant small molecule differences between sample types, between species (such as human and bovine), with potential OA biomarkers and targets for local or systemic therapies. Studies were limited by numbers and a lack of disease correlation. Future studies should use NMR and MS analysis to further investigate large population subgroups including inflammatory arthropathy, OA subclasses, age and joint differences.
Keywords: Mass spectroscopy (MS); Metabolic syndrome (MeS); Metabonomics; Nuclear magnetic resonance (NMR) spectroscopy; Osteoarthritis (OA); Synovial fluid (SF).
Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.