Nonlocal heat flux was measured in laser-produced coronal plasmas using a novel Thomson scattering technique. The measured heat flux was smaller than the classical values inferred from the measured plasma conditions in regions with large temperature gradients and agreed with classical values for weak gradients. Vlasov-Fokker-Planck simulations self-consistently calculated the electron distribution functions used to reproduce the measured Thomson scattering spectra and to determine the heat flux. Multigroup nonlocal simulations overestimated the measured heat flux.