Whereas the primary controls on litter decomposition are well established, we lack a framework for predicting interspecific differences in litter decay within and across ecosystems. Given previous research linking tree mycorrhizal association with carbon and nutrient dynamics, we hypothesized that the two dominant mycorrhizal groups in forests - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - differ in litter decomposition rates. We compiled leaf litter chemistry and decay data for AM- and ECM-associating angiosperms and gymnosperms (> 200 species) from temperate and tropical/subtropical, and investigated relationships among decay rates, mycorrhizal association, phylogeny and climate. In temperate forests, AM litters decayed faster than ECM litters, with litter nitrogen and phylogeny best explaining variation in litter decay. In sub/tropical forests, we found no significant difference in litter decay rate between mycorrhizal groups, and variation in decay rates was best explained by litter phosphorus. Our results suggest that knowledge of tree mycorrhizal association may improve predictions of species effects on ecosystem processes, particularly in temperate forests where AM and ECM species commonly co-occur, providing a predictive framework for linking litter quality, organic matter dynamics and nutrient acquisition in forests.
Keywords: litter k; litter quality; mycorrhizal-associated nutrient economy; plant functional group; plant-soil feedbacks; species effects.
© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.