There is a growing appreciation for the important roles microorganisms play in association with plants. Microorganisms are drawn to distinct plant surfaces by the nutrient-rich microenvironment, and in turn some of these colonizing microbes provide mutualistic benefits to their host. The development of plant probiotics to increase crop yield and provide plant resistance against biotic and abiotic stresses, while minimizing chemical inputs, would benefit from a deeper mechanistic understanding of plant-microbe interaction. Technological advances in molecular biology and high-throughput -omics provide stepping stones to the elucidation of critical microbiome gene functions that aid in improving plant performance. Here, we review -omics-based approaches that are propelling forward the current understanding of plant-associated bacterial gene functions, and describe how these technologies have helped unravel key bacterial genes and pathways that mediate pathogenic, beneficial, and commensal host interactions.
Keywords: gene function; genomics; metabolomics; omics; phytopathogens; plant growth-promoting bacteria; plant microbiome; plant-associated bacteria; proteomics; transcriptomics.
Copyright © 2018 Elsevier Inc. All rights reserved.