Abnormal hippocampal activity has been linked to impaired cognitive performance in Alzheimer's disease and schizophrenia, leading to a hypothesis that normalization of this activity may be therapeutically beneficial. Our work suggests that one approach for hippocampal normalization may be through activation of the M4 muscarinic acetylcholine receptor. We used a brain penetrant M4 muscarinic acetylcholine receptor selective activator, PT-3763, to show dose-dependent attenuation of field potentials in Schaffer collateral (CA3-CA1) and recurrent associational connections (CA3-CA3) ex vivo in hippocampal slices. In vivo, systemic administration of PT-3763 led to attenuation of glutamate release in CA3 as measured by amperometry and to a dose-dependent decrease in population CA1 pyramidal activity as measured by fiber photometry. This decrease in population activity was also evident with a localized administration of the compound to the recorded site. Finally, PT-3763 reversed scopolamine-induced deficit in Morris water maze. Our results suggest that M4 muscarinic acetylcholine receptor activation may be a suitable therapeutic treatment in diseases associated with hyperactive hippocampal activity.
Keywords: Alzheimer’s disease; M4 muscarinic acetylcholine receptor; MCI; hippocampal hyperactivity; hippocampus; schizophrenia.