Protein carbamylation is a nonenzymatic posttranslational protein modification that can be driven, in part, by exposure to urea's dissociation product, cyanate. In humans, when kidney function is impaired and urea accumulates, systemic protein carbamylation levels increase. Additional mediators of protein carbamylation have been identified including inflammation, diet, smoking, circulating free amino acid levels, and environmental exposures. Carbamylation reactions on proteins are capable of irreversibly changing protein charge, structure, and function, resulting in pathologic molecular and cellular responses. Carbamylation has been mechanistically linked to the biochemical pathways implicated in atherosclerosis, dysfunctional erythropoiesis, kidney fibrosis, autoimmunity, and other pathological domains highly relevant to patients with chronic kidney disease. In this review, we describe the biochemical impact of carbamylation on human proteins, the mechanistic role carbamylation can have on clinical outcomes in kidney disease, the clinical association studies of carbamylation in chronic kidney disease, including patients on dialysis, and the promise of therapies aimed at reducing carbamylation burden in this vulnerable patient population.
Keywords: Carbamoylation; Carbamylation; Chronic kidney disease; Dialysis; End stage renal disease; Posttranslational protein modification; Urea; Uremia.
Copyright © 2018 Elsevier Inc. All rights reserved.