The influence of buffer substitution and dilution effects on exosome size and electrophoretic mobility were shown for the first time. Cyclical electrical field flow fractionation (Cy-El-FFF) in various substituted fluids was applied to exosomes and other particles. Tested carrier fluids of deionized (DI) water, 1× phosphate buffered saline (PBS), 0.308 M trehalose, and 2% isopropyl alcohol (IPA) influenced Cy-El-FFF-mediated isolation of A375 melanoma exosomes. All fractograms revealed a crescent-shaped trend in retention times with increasing voltage with the maximum retention time at ∼1.3 V AC. A375 melanoma exosome recovery was approximately 70-80% after each buffer substitution, and recovery was independent of whether the sample was substituted into 1× PBS or DI water. Exosome dilution in deionized water produced a U-shaped dependence on electrophoretic mobility. The effect of dilution using 1× PBS buffer revealed a very gradual change in electrophoretic mobility of exosomes from ∼-1.6 to -0.1 μm cm/s V, as exosome concentration was decreased. This differed from the use of DI water, where a large change from ∼-5.5 to -0.1 μm cm/s V over the same dilution range was observed. Fractograms of separated A375 melanoma exosomes in two substituted low-ionic-strength buffers were compared with synthetic particle fractograms. Overall, the ability of Cy-El-FFF to separate exosomes based on their size and charge is a highly promising, label-free approach to initially catalogue and purify exosome subtypes for biobanking as well as to enable further exosome subtype interrogations.